n queen topics
Home
Group actions
Search algorithm
Use symmetry, regular NQ problem
Evolution trees
Special properties
Necklaces
Conflicts
Conflict tables
Smallest solutions and greedy sequence
World records
Tables of counting results
Images for n=8
Torus images for n=13
Other pages to the n queens problem
Bibliografy
 
 
Other themes
Primes from sums of factors
Numbers by primes distribution
 
 
 
This page in another language
German

Do primes arise from wrong binomic formulae?

When at school, we had to learn formulae called "binomische Formeln" in German; I do not know the English term for them. Search with Google led me to the binomial theorem which is very near, but more general (also for higher powers, not only for quadratic expressions), and which includes the binomial coefficients while the formulae we had to learn had only an explicit 2.

Perhaps you remember the three formulae

          (a + b)² = a² + 2ab + b²
          (a - b)² = a² - 2ab + b²
          (a + b) (a - b) = a² - b²
The first two are very similar; you only have to remember that the minus sign is only with the middle term, precisely not with the b². The third formula was called the "mixed binomic forumla", and it has the minus with the quadratic term b². Its right side is simpler than the left, opposite to the first two formulae.

The difficulty with these formulae was not to use them left to right, but to use them backwards, right to left. As an example, we should simplify a fraction like

          a² - b²                       
          -------  , giving  1/3 (a + b)
          3a - 3b

There seems no connection to prime numbers - or is there a hidden connection? One can test and insert some numbers for a and b. We limit the discussion to positive integers a and b, having a > b, in the following.

Searching for primes, it is not an good idea to start with an expression a² - b²; the mixed formula gives exactly a factorisation, and therefore, the result of a² - b² is not a prime, except for the special case a - b = 1. With this special case, one can reach all odd numbers, and therefore all primes but 2. This is noted on the margin only, here.

Numbers from the first two formulae are not suitable either; they are squares, and a square is not a prime.

It happened now and then that we computed errorneously (a + b)² = a² + b²; I call it error 1. The tentation was to do it like the multiplication rule (the distributive law) which states that (a + b) * 2 = a * 2 + b * 2.

Error 2 is to omit the coefficient 2 of the middle term, i.e. to 'compute' (a + b)² = a² + ab + b². And error 3 is to set the minus sign also with the b², i.e. to 'compute' (a - b)² = a² - ab - b². In the following text, I use this third term with a plus sign for the middle term; this is equivalent: if you can compute a number as a²-ab-b², then you can write it as a²+ab-b² also, for some smaller a and b.

Intresting (at least for me) is that these three error terms

          a² + b²
          a² + ab + b²
          a² + ab - b²
yield rather many prime numbers, and that one can see some schema or some type of order with it. This is shown in the following table. Depending on the type, the primes are shown on different background.

Primes of form a²+b² can be factorised if you work with Gaussian integers. Every prime which gives a remainder of 1 when divided by 4 is of form a²+b², and is shown with yellow background.

For some primes, it happens that we get them by two (or even all tree? I do not know) different terms. For instance, one gets 13 both as 3² + 2² = 9 + 4 (error 1 term), and also as 3² + 3 * 1 + 1² (error 2 term).

Primes of form a²+b² have yellow background, not depending on if they allow another "error term" or not. Blue background stands for "only a² + ab + b²", red for "only a² + ab - b²", and green for "both second an third error term is possible".

The table is very economic, maybe it can be called spartanic. Numbers divisible by 2, 3 or 5 are completely omitted. For a range of 30 numbers, there are only 8 possibilities to find a prime. I started the table with these 8 colums. This gives a table which is almost bewildering by its colorfulness.

Then I realized that there is only one color for a column when I double the range of each line to 60 numbers, containing 16 places for primes. That is how you see the table now.

Beyond that: all prime numbers in a column are colored, and they all get the same color. Eight columns out of the 16 contain primes of form a²+b² (yellow), two primes of form a²+ab+b² (blue), two colums primes of form a²+ab-b² (red), and two columns contain primes which allow the second and the third "error fromula" (green). The last two two columns contain primes which do not fit to any of the three "error formulae".

One can even find the primes of form a² + b² in the OEIS (Online Encyclopedia of Integer Sequences), under A002144. Primes of form a²+ab+b² are under A068229, and those of form a²+ab-b² under A141302. And you find also the primes not fitting to any "error formula", under A107169.


Legend
Prime can be written as a²+b²
Prime can be written as a²+ab+b²
Prime can be written as a²+ab-b²
Both a²+ab+b² and a²+ab-b² possible
Not a prime, a product a*b
Prime without simple binomic expression
 

+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
0
1
2_13_13_24_13_2
23
5_25_16_15_46_1
47
7 * 7
7_27_2
606_57_28_18_3
7 * 11
7_3
83
8_5
7 * 13
9_410_19_2
107
10_38_7
7 * 17
120
11 * 11
7_611_1
7 * 19
11_410_3
11 * 13
10_79_511_6
7 * 23
11_3
167
13 * 13
13_212_5
18010_9
11 * 17
13_212_714_113_2
7 * 29
11 * 19
14_1
7 * 31
13 * 17
11_6
227
15_213_815_1
24015_4
13 * 19
15_2
11 * 23
16_1
7 * 37
263
13_1010_914_916_513_6
7 * 41
17 * 17
17_2
13 * 23
300
7 * 43
17_116_513_1214_11
11 * 29
17 * 19
7 * 47
11_1016_9
11 * 31
7 * 49
347
18_517_817_7
360
19 * 19
13_9
7 * 53
18_7
13 * 29
15_7
383
17_10
17 * 23
19_620_1
13 * 31
11 * 37
20_3
7 * 59
20_1
42015_14
7 * 61
19_517_12
19 * 23
18_5
443
20_7
11 * 41
21_419_1021_1
467
7 * 67
11 * 43
21_2
480
13 * 37
21_220_7
17 * 29
7 * 71
18_7
503
22_5
7 * 73
11 * 47
20_1117_9
17 * 31
23 * 23
13 * 41
11 * 49
54021_1014_13
19 * 29
7 * 79
19_14
13 * 43
563
20_1321_524_1
7 * 83
11 * 53
587
19 * 31
23_824_1
60024_523_3
13 * 47
18_1719_1622_5
7 * 89
17 * 37
15_14
13 * 49
25_418_11
647
11 * 59
22_1323_10
66025_6
23 * 29
11 * 61
23_1226_1
7 * 97
683
13 * 53
19_11
17 * 41
26_5
19 * 37
7 * 101
22_15
23 * 31
24_11
720
7 * 103
18_13
17 * 43
27_2
11 * 67
23_7
743
7 * 107
21_1026_920_19
7 * 109
13 * 59
25_1222_17
19 * 41
780
11 * 71
27_2
7 * 113
13 * 61
26_11
17 * 47
11 * 73
28_525_6
19 * 43
25_1419_14
827
27_10
17 * 49
27_5
840
29 * 29
11 * 77
23 * 37
23_1829_423_10
863
11 * 79
13 * 67
29_625_1621_13
887
7 * 127
19 * 47
29 * 31
900
17 * 53
26_727_13
11 * 83
7 * 131
18_17
13 * 71
23_20
19 * 49
24_1929_10
23 * 41
947
13 * 73
28_13
7 * 137
960
31 * 31
27_728_11
7 * 139
31_4
11 * 89
983
23 * 43
26_931_6
13 * 77
17 * 59
19 * 53
28_1523_2231_2
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
102030_11
13 * 79
29_1032_3
17 * 61
22_15
7 * 149
32_529_6
7 * 151
31_1031_3
11 * 97
30_13
29 * 37
13 * 83
1080
23 * 47
21_1731_533_229_16
7 * 157
1103
25_22
11 * 101
26_21
19 * 59
33_1
23 * 49
27_20
11 * 103
17 * 67
1140
7 * 163
31 * 37
33_233_8
13 * 89
19 * 61
1163
7 * 167
25_14
11 * 107
34_5
13 * 91
1187
29 * 41
32_13
11 * 109
120025_24
17 * 71
7 * 173
27_2231_16
23 * 53
1223
35_229_1034_9
17 * 73
11 * 113
29 * 43
32_15
7 * 179
35_1
1260
13 * 97
7 * 181
31 * 41
19 * 67
34_1133_5
1283
35_826_1536_126_2527_14
1307
17 * 77
13 * 101
33_10
132036_523_19
11 * 121
31 * 43
7 * 191
13 * 103
17 * 79
19 * 71
7 * 193
23 * 59
31_20
29 * 47
1367
37 * 37
37_2
7 * 197
138034_15
19 * 73
13 * 107
7 * 199
11 * 127
25_18
23 * 61
28_25
17 * 83
13 * 109
29 * 49
31_11
1427
30_2337_837_2
1440
11 * 131
37_236_538_3
31 * 47
30_13
19 * 77
13 * 113
35_6
7 * 211
35_1638_1
1487
33_2038_736_7
1500
19 * 79
11 * 137
35_13
17 * 89
37 * 41
31 * 49
1523
11 * 139
26_19
29 * 53
23 * 67
34_9
17 * 91
35_1832_2339_1
1560
7 * 223
38_336_11
13 * 121
19 * 83
37_5
1583
7 * 227
37 * 43
34_2140_1
7 * 229
1607
40_338_1336_17
162039_1037_6
7 * 233
23 * 71
31_26
11 * 149
31 * 53
17 * 97
13 * 127
36_19
11 * 151
26_21
1667
38_15
7 * 239
23 * 73
1680
41 * 41
7 * 241
19 * 89
37_1841_430_17
13 * 131
35_22
29 * 59
17 * 101
40_1141_1
11 * 157
19 * 91
38_17
37 * 47
174030_2933_14
17 * 103
32_27
7 * 251
38_7
41 * 43
29 * 61
23 * 77
39_16
13 * 137
37_9
1787
42_5
11 * 163
7 * 257
180035_24
13 * 139
39_10
37 * 49
23 * 79
17 * 107
1823
31 * 59
30_19
11 * 167
7 * 263
19 * 97
1847
43 * 43
17 * 109
13 * 143
186031_3038_939_1433_2841_1427_23
7 * 269
40_17
31 * 61
7 * 271
35_26
11 * 173
1907
23 * 83
43_8
19 * 101
1920
17 * 113
41 * 47
43_242_13
13 * 149
7 * 277
29 * 67
43_1026_25
19 * 103
37 * 53
13 * 151
7 * 281
11 * 179
38_2344_1
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
1980
7 * 283
43_3
11 * 181
43_1234_2942_5
2003
41 * 49
39_1044_9
43 * 47
17 * 119
2027
45_2
19 * 107
43_5
2040
13 * 157
23 * 89
7 * 293
42_17
17 * 121
29 * 71
2063
38_25
19 * 109
31 * 67
41_2037_14
2087
45_8
23 * 91
41_19
2100
11 * 191
43 * 49
45_233_32
29 * 73
13 * 163
11 * 193
40_2341_936_2946_543_6
19 * 113
7 * 307
37_28
17 * 127
216044_15
11 * 197
13 * 167
41 * 53
7 * 311
35_18
37 * 59
11 * 199
7 * 313
13 * 169
31 * 71
31_23
2207
47 * 47
47_2
7 * 317
222045_14
17 * 131
23 * 97
29 * 77
46_1138_15
2243
13 * 173
35_19
37 * 61
19 * 119
31 * 73
2267
37_3047_8
43 * 53
228045_1637_17
29 * 79
42_2344_19
19 * 121
47 * 49
47_1034_21
7 * 331
11 * 211
23 * 101
13 * 179
17 * 137
43_2244_13
234046_1542_1148_1
13 * 181
41_26
7 * 337
17 * 139
23 * 103
46_544_2135_3441_13
31 * 77
42_2537_3245_11
2400
49 * 49
29 * 83
44_19
19 * 127
49_4
41 * 59
2423
7 * 347
17 * 143
49_640_29
7 * 349
2447
31 * 79
11 * 223
45_14
2460
23 * 107
34_23
7 * 353
48_1346_19
37 * 67
13 * 191
19 * 131
47 * 53
11 * 227
41 * 61
49_2
23 * 109
13 * 193
7 * 359
11 * 229
252036_35
19 * 133
45_22
17 * 149
43 * 59
33_25
2543
50_750_146_21
13 * 197
11 * 233
17 * 151
7 * 367
31 * 83
47_10
2580
29 * 89
13 * 199
48_748_17
49 * 53
23 * 113
19 * 137
47_20
7 * 373
51_450_11
43 * 61
37 * 71
11 * 239
43_28
29 * 91
2640
19 * 139
43_14
11 * 241
7 * 379
49_1650_3
2663
17 * 157
49_539_34
7 * 383
38_21
2687
40_3347_2251_2
2700
37 * 73
51_248_1152_3
19 * 143
43_15
7 * 389
52_549_6
23 * 119
46_25
13 * 211
41 * 67
43_3052_7
31 * 89
2760
11 * 251
42_17
17 * 163
47 * 59
44_29
7 * 397
23 * 121
50_1731_3051_1449_2034_27
7 * 401
53 * 53
29 * 97
49_11
2820
31 * 91
11 * 257
19 * 149
48_2341_34
17 * 167
2843
37 * 77
45_1451_1650_19
7 * 409
47 * 61
19 * 151
17 * 169
48_23
2880
43 * 67
33_29
49 * 59
11 * 263
44_31
13 * 223
2903
53_10
41 * 71
54_1
23 * 127
37 * 79
2927
29 * 101
7 * 419
52_5
2940
17 * 173
7 * 421
13 * 227
53_1246_29
11 * 269
2963
40_3754_1
13 * 229
11 * 271
19 * 157
29 * 103
49 * 61
41 * 73
49_23
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
300051_20
31 * 97
51_10
23 * 131
7 * 431
38_25
3023
13 * 233
7 * 433
54_1155_4
17 * 179
11 * 277
45_32
43 * 71
23 * 133
306055_641_22
37 * 83
7 * 439
17 * 181
45_17
3083
55_8
11 * 281
19 * 163
7 * 443
29 * 107
13 * 239
47_30
11 * 283
51_14
312040_39
53 * 59
31 * 101
13 * 241
56_1
43 * 73
7 * 449
47 * 67
23 * 137
41 * 77
29 * 109
53_6
3167
55_12
19 * 167
17 * 187
318045_3446_1756_1
31 * 103
23 * 139
7 * 457
3203
53_20
19 * 169
56_955_14
11 * 293
7 * 461
50_27
53 * 61
41 * 79
3240
7 * 463
17 * 191
51_2557_256_1142_23
13 * 251
7 * 467
35_31
29 * 113
17 * 193
49 * 67
19 * 173
23 * 143
37 * 89
52_17
330049_3057_1
43 * 77
57_8
31 * 107
50_13
3323
52_2541_25
47 * 71
13 * 257
54_7
3347
17 * 197
7 * 479
57_2
336056_15
37 * 91
52_2358_3
11 * 307
31 * 109
17 * 199
58_555_6
43 * 79
19 * 179
41 * 83
3407
7 * 487
58_7
13 * 263
3420
11 * 311
23 * 149
47 * 73
52_27
7 * 491
19 * 181
11 * 313
43_40
29 * 119
44_3950_3147_19
3467
45_38
23 * 151
49 * 71
3480
59 * 59
11 * 317
53_22
7 * 499
13 * 269
45_22
31 * 113
29 * 121
51_1459_6
7 * 503
13 * 271
3527
48_3558_1359_1
354054_2558_3
53 * 67
19 * 187
49_3457_5
7 * 509
43 * 83
35_34
49 * 73
59_1038_31
17 * 211
37 * 97
53_28
59 * 61
3600
13 * 277
49_18
23 * 157
43_4244_41
47 * 77
3623
19 * 191
54_1146_39
11 * 331
43_26
7 * 521
41 * 89
13 * 281
60_1
3660
7 * 523
19 * 193
55_1748_3759_14
13 * 283
29 * 127
31 * 119
39_3149_3655_26
23 * 161
11 * 337
53_30
47 * 79
57_10
3720
61 * 61
47_22
41 * 91
57_22
37 * 101
43_27
19 * 197
23 * 163
31 * 121
17 * 221
56_25
53 * 71
3767
60_13
49 * 77
55_26
3780
19 * 199
7 * 541
17 * 223
52_3346_41
29 * 131
3803
13 * 293
37 * 103
11 * 347
61_1042_29
43 * 89
7 * 547
53_32
11 * 349
3840
23 * 167
61_257_1462_3
29 * 133
17 * 227
3863
53 * 73
49 * 79
54_3159_20
11 * 353
23 * 169
60_17
17 * 229
7 * 557
3900
47 * 83
62_156_25
43 * 91
61_1457_10
3923
52_3551_19
31 * 127
7 * 563
59_7
3947
11 * 359
59 * 67
37 * 107
3960
17 * 233
58_9
19 * 209
29 * 137
41 * 97
23 * 173
7 * 569
58_25
13 * 307
7 * 571
49_4039_34
4007
19 * 211
62_1357_22
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
402050_3942_31
29 * 139
37 * 109
11 * 367
7 * 577
13 * 311
55_3261_559_24
31 * 131
17 * 239
49 * 83
13 * 313
52_3759_13
4080
53 * 77
61 * 67
63_258_27
17 * 241
63_2
11 * 373
7 * 587
39_35
23 * 179
13 * 317
31 * 133
4127
60_2362_1760_11
4140
41 * 101
29 * 143
7 * 593
48_4359_2657_13
23 * 181
11 * 379
43 * 97
64_9
37 * 113
47 * 89
53 * 79
59 * 71
7 * 599
19 * 221
420051_40
7 * 601
60_13
11 * 383
64_1138_37
41 * 103
65_241_34
19 * 223
65_457_14
31 * 137
7 * 607
53_3863_5
426065_6
17 * 251
61_1157_32
47 * 91
11 * 389
4283
65_8
7 * 613
61_24
23 * 187
13 * 331
59 * 73
31 * 139
19 * 227
7 * 617
4320
29 * 149
62_7
61 * 71
7 * 619
49_4455_18
43 * 101
50_43
19 * 229
66_1
49 * 89
53_21
11 * 397
17 * 257
62_23
29 * 151
4380
13 * 337
41 * 107
64_5
23 * 191
61_26
53 * 83
37 * 119
53_40
11 * 401
7 * 631
65_1466_1
19 * 233
43 * 103
31 * 143
23 * 193
444060_2939_3860_23
61 * 73
64_19
49 * 91
4463
41 * 109
17 * 263
37 * 121
65_1662_9
7 * 641
67 * 67
67_2
11 * 409
4500
7 * 643
57_17
13 * 347
48_4749_4647_30
4523
7 * 647
23 * 197
13 * 349
19 * 239
59 * 77
4547
65_18
29 * 157
47 * 97
456060_3141_37
7 * 653
17 * 269
23 * 199
19 * 241
4583
13 * 353
59_1554_41
43 * 107
51_26
17 * 271
11 * 419
7 * 659
31 * 149
462061_30
7 * 661
11 * 421
41 * 113
59_3458_17
4643
68_565_656_39
59 * 79
49_29
13 * 359
29 * 161
68_764_11
4680
31 * 151
43 * 109
68_1
19 * 247
61 * 77
37 * 127
4703
17 * 277
7 * 673
53 * 89
64_2546_33
29 * 163
52_4558_37
7 * 677
4740
11 * 431
47 * 101
63_17
49 * 97
67 * 71
53_25
11 * 433
19 * 251
13 * 367
17 * 281
7 * 683
63_11
4787
55_4268_1367_5
480065_24
23 * 209
17 * 283
67_1856_41
61 * 79
53 * 91
11 * 439
69_1
7 * 691
47 * 103
29 * 167
37 * 131
13 * 373
23 * 211
43 * 113
486069_10
31 * 157
63_22
11 * 443
61_34
41 * 119
19 * 257
67_20
67 * 73
59 * 83
29 * 169
69_2
7 * 701
70_3
17 * 289
63_25
4920
37 * 133
13 * 379
63_2662_3364_29
11 * 449
4943
49 * 101
46_3569_14
41 * 121
7 * 709
4967
60_3767_22
13 * 383
4980
17 * 293
57_22
31 * 161
63_32
19 * 263
62_15
5003
65_2850_31
29 * 173
70_1158_21
11 * 457
47 * 107
7 * 719
64_23
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
5040
71 * 71
49 * 103
68_7
31 * 163
13 * 389
45_37
61 * 83
37 * 137
11 * 461
71_659_40
23 * 221
5087
7 * 727
11 * 463
65_19
510051_5049_33
19 * 269
53_48
43 * 119
70_3
47 * 109
23 * 223
7 * 733
11 * 467
53 * 97
37 * 139
5147
19 * 271
68_23
67 * 77
5160
13 * 397
42_4165_22
7 * 739
31 * 167
45_38
71 * 73
70_17
29 * 179
66_29
7 * 743
43 * 121
41 * 127
72_5
13 * 401
17 * 307
5220
23 * 227
58_2367_1472_771_14
31 * 169
49 * 107
29 * 181
59 * 89
7 * 751
70_19
19 * 277
23 * 229
11 * 479
67_2865_31
528060_41
17 * 311
37 * 143
67 * 79
71_16
7 * 757
5303
53_50
47 * 113
13 * 409
17 * 313
54_29
7 * 761
73 * 73
73_2
19 * 281
5340
49 * 109
67_1169_10
53 * 101
11 * 487
23 * 233
31 * 173
59 * 91
41 * 131
19 * 283
65_34
7 * 769
5387
17 * 317
73_869_11
5400
11 * 491
57_26
7 * 773
63_3859_4443_42
29 * 187
61 * 89
46_3969_2671_2061_21
13 * 419
60_43
41 * 133
53 * 103
5460
43 * 127
71 * 77
73_2
13 * 421
74_173_2
5483
11 * 499
19 * 289
23 * 239
74_571_6
5507
7 * 787
37 * 149
72_5
552065_3663_1969_14
11 * 503
49 * 113
29 * 191
23 * 241
31 * 179
61 * 91
74_9
67 * 83
47_39
19 * 293
63_4058_47
7 * 797
558066_35
37 * 151
67_29
47 * 119
29 * 193
11 * 509
13 * 431
71 * 79
31 * 181
41 * 137
73 * 77
67_14
17 * 331
13 * 433
43 * 131
72_7
564075_453_3371_1073_1861_4458_27
7 * 809
65_38
53 * 107
7 * 811
23 * 247
46_41
47 * 121
75_862_43
41 * 139
570074_15
13 * 439
69_19
29 * 197
71_26
43 * 133
59 * 97
17 * 337
11 * 521
56_5170_2957_29
7 * 821
57_50
11 * 523
13 * 443
5760
7 * 823
73 * 79
29 * 199
23 * 251
53 * 109
75_2
5783
7 * 827
70_11
31 * 187
76_5
7 * 829
5807
37 * 157
73_22
23 * 253
582075_1469_13
49 * 119
19 * 307
13 * 449
63_22
5843
68_3571_1076_970_31
41 * 143
5867
62_45
7 * 839
69_26
588075_16
29 * 203
43 * 137
71 * 83
76_11
17 * 347
5903
19 * 311
23 * 257
61 * 97
31 * 191
69_14
5927
77 * 77
17 * 349
69_31
5940
13 * 457
19 * 313
11 * 541
57_52
37 * 161
59 * 101
67 * 89
47 * 127
7 * 853
43 * 139
59_50
31 * 193
5987
53 * 113
13 * 461
7 * 857
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
6000
17 * 353
77_173_11
7 * 859
11 * 547
13 * 463
19 * 317
77_10
37 * 163
66_41
7 * 863
74_7
6047
23 * 263
62_47
73 * 83
6060
29 * 209
73_9
13 * 467
77_12
59 * 103
47_43
77 * 79
67_4049_41
67 * 91
74_25
17 * 359
31 * 197
41 * 149
73_28
29 * 211
612064_45
11 * 557
76_578_7
19 * 323
7 * 877
6143
43 * 143
59_30
47 * 131
61 * 101
78_1
7 * 881
31 * 199
58_53
37 * 167
6180
7 * 883
23 * 269
41 * 151
11 * 563
71_3475_7
6203
7 * 887
46_4576_2161_50
49 * 127
13 * 479
73_30
23 * 271
17 * 367
6240
79 * 79
62_27
47 * 133
37 * 169
79_4
11 * 569
6263
70_3759_3179_6
11 * 571
61 * 103
6287
19 * 331
31 * 203
71_34
630075_26
53 * 119
72_23
59 * 107
74_29
71 * 89
6323
77_20
13 * 487
71_36
17 * 373
57_34
11 * 577
7 * 907
73_3272_25
636069_4058_33
23 * 277
78_17
7 * 911
70_17
13 * 491
58_55
77 * 83
59_54
37 * 173
19 * 337
43 * 149
29 * 221
53 * 121
49 * 131
642070_3977_6
59 * 109
7 * 919
41 * 157
47 * 137
17 * 379
80_761_30
11 * 587
71 * 91
23 * 281
29 * 223
63_5068_43
31 * 209
648080_9
13 * 499
76_11
43 * 151
73 * 89
67 * 97
7 * 929
23 * 283
17 * 383
49 * 133
80_11
11 * 593
61 * 107
65_48
47 * 139
13 * 503
6540
31 * 211
73_1473_2672_37
79 * 83
7 * 937
6563
80_1375_1181_470_41
29 * 227
7 * 941
11 * 599
19 * 347
77_10
6600
41 * 161
74_13
11 * 601
17 * 389
13 * 509
58_35
37 * 179
7 * 947
19 * 349
61_54
29 * 229
73 * 91
23 * 289
61 * 109
62_5373_35
666081_10
59 * 113
7 * 953
63_52
11 * 607
78_7
41 * 163
80_1755_39
37 * 181
74_3577_9
19 * 353
78_25
49 * 137
81_2
6720
47 * 143
31 * 217
53 * 127
82_376_31
23 * 293
11 * 613
17 * 397
43 * 157
29 * 233
80_1969_22
67 * 101
7 * 967
13 * 521
76_17
678075_34
11 * 617
75_2267_48
7 * 971
13 * 523
6803
11 * 619
49 * 139
17 * 401
19 * 359
61_33
6827
77_3068_47
7 * 977
684080_21
41 * 167
31 * 221
77 * 89
61_56
19 * 361
6863
62_5575_14
23 * 299
7 * 983
63_31
71 * 97
83 * 83
61 * 113
75_26
6900
67 * 103
67_2680_7
31 * 223
79_26
37 * 187
43 * 161
41 * 169
29 * 239
7 * 991
11 * 631
53 * 131
6947
82_15
17 * 409
75_29
696081_2073_1883_1
19 * 367
71_44
7 * 997
6983
29 * 241
81_574_3976_35
47 * 149
77 * 91
43 * 163
82_1775_34
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
7020
59 * 119
67_27
79 * 89
13 * 541
31 * 227
70_23
7043
53 * 133
11 * 641
84_1
23 * 307
7 * 1009
37 * 191
75_38
11 * 643
81_7
7080
73 * 97
19 * 373
7 * 1013
41 * 173
47 * 151
31 * 229
7103
70_47
13 * 547
11 * 647
64_55
17 * 419
7127
80_27
7 * 1019
59 * 121
7140
37 * 193
7 * 1021
79_14
23 * 311
17 * 421
82_5
29 * 247
67 * 107
71 * 101
84_11
43 * 167
11 * 653
7187
79 * 91
67_52
23 * 313
7200
19 * 379
51_4776_3583_18
7 * 1031
53_45
31 * 233
85_2
7 * 1033
81_26
13 * 557
74_19
7247
11 * 659
82_23
61 * 119
7260
53 * 137
43 * 169
11 * 661
7 * 1039
19 * 383
29 * 251
7283
37 * 197
23 * 317
76_39
49 * 149
67 * 109
7307
78_35
71 * 103
13 * 563
732061_60
17 * 431
81_1163_58
29 * 253
41 * 179
7 * 1049
82_2550_49
7 * 1051
17 * 433
37 * 199
53 * 139
85_12
73 * 101
47 * 157
7380
61 * 121
83 * 89
19 * 389
72_47
13 * 569
49 * 151
11 * 673
31 * 239
75_1984_19
41 * 181
13 * 571
7 * 1061
23 * 323
68_53
43 * 173
7440
7 * 1063
11 * 677
84_5
29 * 257
76_4165_33
17 * 439
77 * 97
31 * 241
86_985_16
7 * 1069
7487
80_33
59 * 127
81_14
7500
13 * 577
62_37
37 * 203
11 * 683
86_11
73 * 103
7523
77_40
17 * 443
79_3671_50
19 * 397
7547
85_18
83 * 91
80_19
756075_44
47 * 161
67 * 113
87_264_59
53 * 143
7583
65_5865_34
71 * 107
11 * 691
69_29
7607
7 * 1087
23 * 331
19 * 401
762086_15
29 * 263
13 * 587
17 * 449
7 * 1091
77_18
7643
68_55
7 * 1093
31 * 247
47 * 163
79 * 97
41 * 187
87_1083_28
7 * 1097
768084_2571_2779_29
49 * 157
43 * 179
78_17
7703
13 * 593
11 * 701
81_34
7 * 1103
59_42
7727
59 * 131
37 * 209
71 * 109
774075_46
61 * 127
23 * 337
88_386_1975_22
7 * 1109
17 * 457
19 * 409
77 * 101
31 * 251
43 * 181
13 * 599
83_3088_7
11 * 709
7800
29 * 269
37 * 211
73 * 107
13 * 601
64_61
7 * 1117
7823
73_50
41 * 191
17 * 461
79_40
31 * 253
59 * 133
47 * 167
67_58
29 * 271
7860
7 * 1123
59_43
17 * 463
68_5774_4975_23
7883
49 * 161
13 * 607
53 * 149
85_26
7 * 1129
7907
11 * 719
41 * 193
80_31
7920
89 * 89
78_19
77 * 103
78_4389_4
17 * 467
47 * 169
82_3574_25
73 * 109
19 * 419
54_49
31 * 257
13 * 613
67 * 119
79 * 101
7980
23 * 347
49 * 163
61 * 131
72_53
11 * 727
19 * 421
53 * 151
85_2889_184_31
13 * 617
71 * 113
23 * 349
37 * 217
29 * 277
85_11
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
8040
43 * 187
13 * 619
83 * 97
87_22
7 * 1151
67_35
11 * 733
65_62
7 * 1153
41 * 197
80_41
59 * 137
8087
67_6082_37
89 * 91
810090_1
67 * 121
81_31
61 * 133
89_14
23 * 353
8123
11 * 739
47 * 173
79 * 103
7 * 1163
17 * 479
8147
29 * 281
31 * 263
41 * 199
816081_4066_3781_35
11 * 743
37 * 221
82_15
49 * 167
19 * 431
90_1
7 * 1171
59 * 139
13 * 631
29 * 283
72_55
43 * 191
85_14
822090_11
19 * 433
83_2277_4886_29
77 * 107
8243
73 * 113
37 * 223
23 * 359
11 * 751
69_34
7 * 1181
90_1388_23
17 * 487
8280
91 * 91
73_2984_1978_4791_4
43 * 193
23 * 361
7 * 1187
59_4691_6
53 * 157
41 * 203
11 * 757
75_52
13 * 641
31 * 269
8340
19 * 439
17 * 491
7 * 1193
87_28
61 * 137
13 * 643
8363
88_25
11 * 761
76_51
29 * 289
83 * 101
8387
90_17
77 * 109
37 * 227
8400
31 * 271
7 * 1201
13 * 647
47 * 179
19 * 443
73_30
8423
77_5055_51
59 * 143
23 * 367
57_49
8447
71 * 119
79 * 107
11 * 769
846090_1991_2
43 * 197
37 * 229
49 * 173
61 * 139
17 * 499
13 * 653
7 * 1213
29 * 293
74_55
11 * 773
47 * 181
67 * 127
92_7
7 * 1217
852085_3663_43
19 * 449
53 * 161
91_1687_10
8543
83 * 103
17 * 503
43 * 199
7 * 1223
91_3
13 * 659
41 * 209
82_43
23 * 373
858066_65
31 * 277
71 * 121
13 * 661
89_2657_50
7 * 1229
80_47
79 * 109
7 * 1231
37 * 233
67_39
8627
90_23
89 * 97
53 * 163
864071_6087_11
41 * 211
17 * 509
11 * 787
7 * 1237
8663
85_38
29 * 299
81_4691_20
19 * 457
73 * 119
92_1573_5884_31
8700
77 * 113
83_18
31 * 281
93_8
23 * 379
65_42
61 * 143
43 * 203
74_3184_4179_50
7 * 1249
8747
13 * 673
92_17
19 * 461
876075_56
11 * 797
49 * 179
31 * 283
67 * 131
90_7
8783
47 * 187
59 * 149
19 * 463
13 * 677
89_9
8807
23 * 383
7 * 1259
84_41
882089_30
91 * 97
93_2
73 * 121
94_193_2
37 * 239
68_65
53 * 167
17 * 521
94_591_6
8867
49 * 181
19 * 467
13 * 683
8880
83 * 107
82_21
17 * 523
78_53
41 * 217
11 * 809
29 * 307
59 * 151
67 * 133
37 * 241
11 * 811
58_51
79 * 113
73_6082_47
7 * 1277
894090_29
23 * 389
88_17
7 * 1279
53 * 169
31 * 289
8963
88_3579_26
47 * 191
7 * 1283
13 * 691
43 * 209
89 * 101
23 * 391
87_22
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
900080_5174_3385_3887_38
71 * 127
29 * 311
7 * 1289
95_2
11 * 821
7 * 1291
95_466_43
83 * 109
93_20
11 * 823
92_7
9060
41 * 221
67_42
47 * 193
43 * 211
29 * 313
7 * 1297
31 * 293
61 * 149
59_51
11 * 827
19 * 479
79_27
7 * 1301
78_55
13 * 701
11 * 829
9120
7 * 1303
94_3
23 * 397
93_2271_64
37 * 247
41 * 223
7 * 1307
70_3979_5485_44
77 * 119
89 * 103
53 * 173
73_62
67 * 137
918091_3078_29
91 * 101
29 * 317
17 * 541
83_22
9203
80_53
61 * 151
13 * 709
95_14
23 * 401
9227
11 * 839
7 * 1319
88_23
924096_5
7 * 1321
29 * 319
19 * 487
76_59
47 * 197
59 * 157
31 * 299
73 * 127
94_2195_1662_49
37 * 251
7 * 1327
77_58
17 * 547
9300
71 * 131
41 * 227
96_1
67 * 139
77 * 121
95_3
9323
19 * 491
43 * 217
96_1185_4681_26
13 * 719
95_18
47 * 199
49 * 191
9360
37 * 253
29 * 323
87_34
91 * 103
79_56
83 * 113
11 * 853
41 * 229
86_1971_66
79 * 119
91_11
23 * 409
97 * 97
97_287_37
942086_45
11 * 857
87_3893_2891_3490_13
71 * 133
11 * 859
13 * 727
49 * 193
94_2578_31
9467
17 * 557
97_893_10
9480
19 * 499
53 * 179
92_13
11 * 863
76_61
59 * 161
43 * 221
37 * 257
79_30
31 * 307
89_40
89 * 107
7 * 1361
13 * 733
82_5391_17
9540
47 * 203
73_3893_11
41 * 233
19 * 503
79 * 121
73 * 131
7 * 1367
17 * 563
61 * 157
67 * 143
37 * 259
9587
43 * 223
53 * 181
29 * 331
960095_24
13 * 739
7 * 1373
98_3
59 * 163
63_50
9623
98_595_6
23 * 419
31 * 311
86_21
11 * 877
80_57
49 * 197
13 * 743
966070_69
7 * 1381
19 * 509
17 * 569
94_2993_10
23 * 421
92_35
11 * 881
81_56
89 * 109
31 * 313
17 * 571
73 * 133
11 * 883
89_31
972075_64
71 * 137
37 * 263
97_18
91 * 107
95_7
9743
82_55
49 * 199
11 * 887
43 * 227
13 * 751
9767
88_45
29 * 337
77 * 127
978090_4171_4289_34
7 * 1399
97 * 101
41 * 239
9803
17 * 577
65_4999_4
61 * 161
47 * 209
31 * 317
98_1592_3796_7
9840
13 * 757
43 * 229
92_19
59 * 167
89_4483_27
7 * 1409
71 * 139
91_15
83 * 119
41 * 241
74_39
9887
31 * 319
13 * 761
19 * 521
990099_1098_3
53 * 187
23 * 431
47 * 211
91 * 109
9923
85_5261_54
19 * 523
71_70
61 * 163
49 * 203
90_43
37 * 269
23 * 433
9960
7 * 1423
87_22
59 * 169
82_57
11 * 907
17 * 587
67 * 149
7 * 1427
97 * 103
13 * 769
73 * 137
7 * 1429
10007
100_3
31 * 323
43 * 233
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
10020
11 * 911
37 * 271
7 * 1433
79 * 127
89_4678_35
83 * 121
13 * 773
23 * 437
89 * 113
94_35
29 * 347
10067
87_50
7 * 1439
91_29
10080
17 * 593
77 * 131
95_1393_38
23 * 439
87_23
10103
11 * 919
85_26
67 * 151
29 * 349
53 * 191
41 * 247
7 * 1447
98_2392_25
1014085_54
73 * 139
96_11
71 * 143
7 * 1451
73_42
10163
100_13
7 * 1453
96_3195_34
17 * 599
61 * 167
23 * 443
97_28
47 * 217
10200
101 * 101
59 * 173
93_22
7 * 1459
17 * 601
11 * 929
10223
53 * 193
13 * 787
29 * 353
77 * 133
91_18
10247
37 * 277
83_5893_23
10260
31 * 331
59_5899_587_52
43 * 239
19 * 541
91 * 113
100_17
41 * 251
7 * 1471
101_10101_1
11 * 937
61 * 169
92_43
17 * 607
1032095_36
23 * 449
91_4198_2779_64
49 * 211
10343
79 * 131
11 * 941
94_39
13 * 797
43 * 241
7 * 1481
80_63
41 * 253
97 * 107
10380
7 * 1483
47 * 221
93_26
19 * 547
37 * 281
70_47
101 * 103
7 * 1487
29 * 359
11 * 947
17 * 613
7 * 1489
10427
102_597_32
73 * 143
10440
53 * 197
31 * 337
7 * 1493
102_7101_1663_55
10463
29 * 361
37 * 283
99_26
47 * 223
11 * 953
10487
17 * 617
7 * 1499
92_37
1050090_49
79 * 133
23 * 457
73_72
13 * 809
67 * 157
17 * 619
100_2385_29
41 * 257
83 * 127
13 * 811
53 * 199
77 * 137
61 * 173
96_17
10560
59 * 179
98_9
31 * 341
97 * 109
7 * 1511
71 * 149
19 * 557
85_58
89 * 119
79_66101_20
23 * 461
10607
103 * 103
103_2
41 * 259
10620
43 * 247
62_5795_22
49 * 217
11 * 967
73_45
29 * 367
23 * 463
65_5481_64
7 * 1523
66_53
10667
47 * 227
13 * 821
59 * 181
10680
11 * 971
79_3899_10
37 * 289
19 * 563
13 * 823
77 * 139
103_1069_50
7 * 1531
71 * 151
94_17
17 * 631
100_2783_6293_38
10740
23 * 467
11 * 977
13 * 827
103_12
31 * 347
53 * 203
47 * 229
89 * 121
89_25
13 * 829
91_50
41 * 263
67 * 161
95_42
43 * 251
93_43
10800
7 * 1543
101 * 107
19 * 569
11 * 983
29 * 373
31 * 349
79 * 137
91 * 119
74_4589_54
37 * 293
7 * 1549
10847
19 * 571
97_38101_7
1086094_4583_34
7 * 1553
83 * 131
73 * 149
43 * 253
10883
80_6799_10
17 * 641
11 * 991
91_23
13 * 839
90_53
7 * 1559
61 * 179
10920
67 * 163
49 * 223
17 * 643
29 * 377
104_11102_5
31 * 353
82_65
47 * 233
99_34
97 * 113
19 * 577
11 * 997
7 * 1567
98_37100_11
10980
79 * 139
63_58
29 * 379
88_57
7 * 1571
17 * 647
11003
101 * 109
91 * 121
23 * 479
103 * 107
73 * 151
11027
41 * 269
59 * 187
83 * 133
+ 1+ 7+ 11+ 13+ 17+ 19+ 23+ 29+31+37+ 41+ 43+ 47+ 49+ 53+ 59
11040
61 * 181
98_13
43 * 257
7 * 1579
89_5695_18
37 * 299
85_6270_51
53 * 209
7 * 1583
81_38
11087
13 * 853
103_22
11 * 1009
11100
17 * 653
29 * 383
41 * 271
77_7286_6185_33
49 * 227
31 * 359
105_1
43 * 259
13 * 857
11 * 1013
71 * 157
93_50
19 * 587
96_29
1116080_69
13 * 859
95_3797_42104_19
7 * 1597
53 * 211
67 * 167
31 * 361
91_54
23 * 487
17 * 659
7 * 1601
11 * 1019
82_67
13 * 863
11220
49 * 229
103 * 109
11 * 1021
47 * 239
17 * 661
105_2
11243
7 * 1607
94_21104_21106_5
7 * 1609
19 * 593
59 * 191
92_5395_46
11280
29 * 389
78_43
7 * 1613
23 * 491
79 * 143
98_15
89 * 127
43 * 263
101_10106_985_64
67 * 169
47 * 241
95_48
7 * 1619
29 * 391
11340
11 * 1031
7 * 1621
96_3593_52
41 * 277
37 * 307
11 * 1033
100_37
83 * 137
31 * 367
19 * 599
99_14
59 * 193
7 * 1627
103_2896_37
11400
13 * 877
61 * 187
100_17
101 * 113
49 * 233
19 * 601
11423
11 * 1039
71 * 161
94_51
17 * 673
82_39
11447
107 * 107
13 * 881
7 * 1637
11460
73 * 157
91_2796_41
77 * 149
23 * 499
13 * 883
11483
92_5589_30101_36
53 * 217
74_49
37 * 311
17 * 677
29 * 397
96_47
11520
41 * 281
94_23
13 * 887
19 * 607
83 * 139
11 * 1049
97 * 119
107_1090_29
91 * 127
11 * 1051
31 * 373
43 * 269
23 * 503
71 * 163
97_35
11580
37 * 313
77_46
67 * 173
107_12106_19
7 * 1657
41 * 283
47 * 247
17 * 683
96_4986_65
59 * 197
77 * 151
29 * 401
103_32
103 * 113
11640
7 * 1663
19 * 613
61 * 191
43 * 271
104_29
89 * 131
107 * 109
7 * 1667
11 * 1061
106_21100_41
7 * 1669
31 * 377
108_5
11 * 1063
99_26
11700105_26
23 * 509
49 * 239
53 * 221
79_7463_62
19 * 617
37 * 317
66_59
97 * 121
59 * 199
93_26
17 * 691
31 * 379
73 * 161
11 * 1069
11760
19 * 619
41 * 287
79 * 149
61 * 193
104_31107_3
11783
83_70
13 * 907
47 * 251
101_40
37 * 319
11807
49 * 241
98_47
53 * 223
1182090_6198_1999_29108_13
89 * 133
87_35
13 * 911
41 * 289
7 * 1693
71 * 167
29 * 409
103_11
11867
83 * 143
31 * 383
7 * 1697
11880
109 * 109
97_21
47 * 253
7 * 1699
109_4
73 * 163
11903
97_50
43 * 277
17 * 701
91 * 131
67_59
11927
79 * 151
107_22101_22
1194095_54
13 * 919
37 * 323
108_17
11 * 1087
78_47
7 * 1709
88_6571_55
59 * 203
109_10
23 * 521
11987
19 * 631
67 * 179
71 * 169
Prepared by Matthias Engelhardt
 
last change: 2019-10-03
Address of page: http://nqueens.de/otherTopics/WrongBinomic.en.html